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ABSTRACT

Security organizations often attempt to disrupt ter-
ror or insurgent networks by targeting “high value
targets” (HVT’s). However, there have been numer-
ous examples that illustrate how such networks are
able to quickly re-generate leadership after such an
operation. Here, we introduce the notion of a shap-
ing operation in which the terrorist network is first
targeted for the purpose of reducing its leadership
re-generation ability before targeting HVT’s. We
look to conduct shaping by maximizing the network-
wide degree centrality through node removal. We
formally define this problem and prove solving it is
NP-Complete. We introduce a mixed integer-linear
program that solves this problem exactly as well as
a greedy heuristic for more practical use. We imple-
ment the greedy heuristic and found in examining five
real-world terrorist networks that removing only 12%
of nodes can increase the network-wide centrality be-
tween 17% and 45%. We also show our algorithm
can scale to large social networks of 1, 133 nodes and
5, 541 edges on commodity hardware.

I INTRODUCTION

Terrorist and insurgent networks are known for their
ability to regenerate leadership after targeted attacks.
For example, the infamous Al Qaeda in Iraq terror-
ist leader Abu Musab al-Zarqawi was killed on June
8th, 2006 1 only to be replaced with Abu Ayyub al-
Masri about a week later. 2 Here, we introduce the
notion of a shaping operation in which the terrorist
network is first targeted for the purpose of reduc-
ing its leadership re-generation ability. Such shap-
ing operations would then be followed by normal at-
tacks against high value targets – however the net-
work would be less likely to recover due to the initial
shaping operations. In this paper, we look to shape
such networks by increasing network-wide centrality,

first introduced in [1]. Intuitively, this measure pro-
vides insight into the criticality of high-degree nodes.
Hence, a network with a low network-wide central-
ity is a more decentralized organization and likely
to regenerate leadership. In the shaping operations
introduced in this paper, we seek to target nodes
that will maximize this measure - making follow-on
attacks against leadership more effective. Previous
work has primarily dealt with the problem of lead-
ership regeneration by focusing on individuals likely
to emerge as new leaders [2]. However, targeting or
obtaining information about certain individuals may
not always be possible. Hence, in this paper, we tar-
get nodes that affect the reduce the network’s ability
regenerate leadership as a whole.

The main contributions of this paper is the introduc-
tion of a formal problem we call FRAGILITY (Sec-
tion II) which seeks to find a set of nodes whose re-
moval would maximize the network-wide centrality.
We also included in the problem a “no strike list” -
nodes in the network that cannot be targeted for var-
ious reasons. This is because real-world targeting of
terrorist or insurgent networks often includes restric-
tions against certain individuals. We also prove that
this problem is NP-complete (and the associated op-
timization problem is NP-hard) which means that an
efficient algorithm to solve it optimally is currently
unknown. We then provide two algorithms for solv-
ing this problem (Section III). Our first algorithm
is an integer program that ensures an exact solu-
tion and, though intractable by our complexity re-
sult, may be amenable to an integer program solver.
Then we introduce a greedy heuristic that we show
experimentally (in Section IV) to provide good re-
sults in practice (as we demonstrate on six different
real-world terrorist networks) and scales to networks
of 1, 133 nodes and 5, 541 edges. In examining five
real-world terrorist networks, we found that success-
ful targetting operations against only 12% (or less)
of nodes can increase the network-wide centrality be-

1http://www.nytimes.com/2006/06/08/world/middleeast/08cnd-iraq.html? r=1
2http://articles.cnn.com/2006-06-15/world/iraq.main 1 al-zarqawi-al-qaeda-leader-zawahiri? s=PM:WORLD
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tween 17% and 45%. Additionally, we discuss related
work further in Section V.

We would like to note that the targeting of individuals
in a terrorist or insurgent network does not necessar-
ily mean to that they should be killed. In fact, for
“shaping operations” as the ones described in this pa-
per, the killing of certain individuals in the network
may be counter-productive. This is due to the fact
that the capture of individuals who are likely emer-
gent leaders may provide further intelligence on the
organization in question.

II TECHNICAL PRELIMINARIES AND
COMPUTATIONAL COMPLEXITY

We assume that an undirected social network is rep-
resented by the graph G = (V,E). Additionally, we
assume a “no strike” set, S ⊆ V . Intuitively, these are
nodes in a terrorist/insurgent network that cannot be
targeted. This set is a key part of our framework, as
real-world targeting of terrorist and/or insurgents in
a terrorist/insurgent network is often accompanied
by real-world constraints. For example, consider the
following:

• We may know an individual’s relationships in
the terrorist/insurgent network, but may not
have enough information (i.e. where he or she
may reside, enough evidence, etc.) to actually
target him or her.

• The potential target may be politically sensi-
tive.

• The potential target may have fled the coun-
try or area of operations but still maintains his
or her role in the terrorist/insurgent network
through electronic communication.

• The potential “target” may actually be a
source of intelligence and/or part of an ongoing
counter-intelligence operation (i.e. as described
in [3]).

Throughout this paper we will also use the follow-
ing notation. The symbols NG,MG will denote the
sizes of V,E respectively. For each i ∈ V , we will use
di to denote the degree of that node (the number of
individuals he/she is connected to) and ηi to denote
the set of neighbors and we extend this notation for
subsets of V (for V ′ ⊆ V, η(V ′) =

⋃
i∈V ′ ηi). We will

use the notation κi to denote all edges in E that are
adjacent to node i and the notation d∗G to denote the

maximum degree of the network. Given some subset
V ′ ⊆ V , we will use the notation G(V ′) to denote
the subgraph of G induced by V ′. We describe an
example network in Example II.1.

Example II.1. Consider network Gsam in [Figure
1]. Nodes a and b may be leaders of a strategic cell
that provides guidance to attack cells (nodes c-f and
g-j). Note that no members in the attack cells are
linked to each other. Also note that if node a is the
leader, and targeted, he could easily be replaced by b.

fig 1. Sample network (Gsam) for Example II.1.

1 NETWORK-WIDE DEGREE CEN-
TRALITY

We now introduce the notion of network-wide degree
centrality as per [1]. The key intuition of this paper
is to use this centrality as a measure of the network’s
ability to re-generate leadership.

Definition II.1 (Network-Wide Degree Central-
ity [1]). The degree centrality of a network G, denoted
CG is defined as:

CG =

∑
i d
∗
G − di

(NG − 1)(NG − 2)
(1)

We note that there are other types of network-wide
centrality (i.e. network-wide betweenness, closeness,
etc.). We leave the consideration of these alternate
definitions of network-wide centrality to future work.
Freeman [1] shows that for a star network, the quan-
tity

∑
i d
∗
G− di equals (NG− 1)(NG− 2) - and this is

the maximum possible value for this quantity. Hence,
the value for CG can be at most 1. As this equation
is clearly always positive, network-wide degree cen-
trality is a scalar in [0, 1]. Turning back to Exam-
ple II.1, we can compute CGsam

= 0.38 - which seems
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to indicate that in this particular terrorist/insurgent
network that, after leadership is targeted, there is a
cadre of second-tier individuals who can eventually
take control of the organization. Throughout this
paper, we find it useful to manipulate Equation 1 as
follows.

CG =
NGd

∗
G − 2MG

(NG − 1)(NG − 2)
(2)

We notice that the centrality of a network really
depends on three things: number of nodes, num-
ber of edges, and the highest degree of any node
in the network. We leverage this re-arranged equa-
tion in many of our proofs. Further, we will use the
function fragileG : V → < to denote the level of
network-wide of the graph after some set of nodes
is removed. Hence, fragileG(V ′) = CG(V−V ′). We
note that this function has some interesting charac-
teristics. For example, for some subset V ′ ⊂ V and
element i ∈ V −V ′, it is possible that fragileG(V ′) >
fragile(V ′∪{i}) or fragileG(V ′) < fragile(V ′∪{i}),
hence fragileG is not necessarily monotonic or anti-
monotonic in this sense. Further, given some ad-
ditional element j ∈ V − V ′, it is possible that
fragileG(V ′ ∪ {j})− fragileG(V ′) > fragileG(V ′ ∪
{i, j})− fragileG(V ′ ∪ {j}) or fragileG(V ′ ∪ {j})−
fragileG(V ′) < fragileG(V ′∪{i, j})−fragileG(V ′∪
{j}). Hence, fragileG is not necessarily sub- or
super- modular either. Consider Example II.2.

Example II.2. Consider the network Gsam in
[Figure 1]. Here, fragileGsam

(∅) = 0.33,
fragileGsam

({a}) = fragileGsam
({b}) = 0.57,

fragileGsam
({c}) = 0.30, and fragileGsam

({a, b}) =
0.0. The fact that fragileGsam

({c} < fragileGsam
(∅)

and fragileGsam({a} > fragileGsam(∅) illustrate
that fragileGsam is not necessarily monotonic or
anti-monotonic. Now let us consider the incremen-
tal increase of adding an additional element. Adding
a to ∅ causes fragileGsam

to increase by 0.24 while
adding a to {b} ⊃ ∅ causes fragileGsam to decrease
by 0.57 - implying sub-modularity. However, adding
c to ∅ causes fragileGsam

to decrease by 0.03 while
adding c to set {a, b} ⊃ ∅ causes fragileGsam

to in-
crease by 0.1 (as fragileGsam

({a, b, c} = 0.1) - im-
plying super-modularity. Hence, fragileGsam

is not
necessarily sub- or super- modular.

2 PROBLEMS AND COMPLEXITY RE-
SULTS

We now have all the pieces to introduce our problems
of interest. We include decision and optimization ver-

sions.

FRAGILITY (k, x,G, S):
INPUT: Natural number k, real number x, network
G = (V,E), and no-strike set S
OUTPUT: “Yes” if there exists set V ′ ⊆ V − S s.t.
|V ′| ≤ k and fragileG(V ′) > x – “no” otherwise.

FRAGILITY OPT (k,G, S):
INPUT: Natural number k, network G = (V,E), and
no-strike set S
OUTPUT: Set V ′ ⊆ V − S s.t. |V ′| ≤ k s.t.
6 ∃V ′′ ⊆ V − S s.t. |V ′′| ≤ k and fragileG(V ′′) >
fragileG(V ′).

As our problems seek to find sets of nodes, rather
than individual ones, it raises the question of
“how difficult are these problems.” We prove that
FRAGILITY is NP-Complete - meaning an efficient
algorithm to solve it optimally is currently unknown.
Following directly from this result is the NP-hardness
of FRAGILITY OPT . Below we state and prove
this result.

Theorem 1 (Complexity of FRAGILITY ).
FRAGILITY is NP-Complete.

Proof. Membership in NP is trivial, consider a set V ′

of size k, – clearly we can calculate fragileG(V ′) in
polynomial time.
Next we consider the vertex-cover (V C) problem and
show that it can be embedded into an instance of
FRAGILITY . In the V C problem, the input con-
sists of undirected graph G∗ = (V ∗, E∗) and natural
number k. The output is “yes” iff there is a set
V ∗∗ ⊆ V ∗ of size at most k s.t. for all (i, j) ∈ E∗,
either i or j (or both) are in V ∗. This problem is
well-known to be NP-hard. First we create a new
network G = (V,E) which consists of graph G∗ but
with NG∗+2 additional nodes which form a star that
is disconnected from the rest of the network. All of
the new nodes are put in the no-strike set S (part
of the input of FRAGILITY ). Clearly, the center
of this star is always the most central node in the
graph, no matter what is removed from set V − S.
This allows us to treat d∗G as a constant equal to
NG + 1. Also note that with this construction, for
both problems, if a solution exists of less than size k,
there also exists a solution of exactly size k. Further,
we note that for any subset of V whose removal does
not affect the overall maximal degree of the network
(which is any node outside the set S - hence in some
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corresponding subset of V ∗ in the graph of the dom-
inating set problem), when some set V ′ (of size k) is
removed from V , the network-wide degree centrality
for the resulting graph can be expressed as follows:

fragileG(V ′) =
(NG−k)(NG+1)−2(MG−|

⋃
i∈V ′ κi|)

(NG−k−1)(NG−k−2) .

The proof of correctness of the embedding rests on
proving that a “yes” answer is returned for the vertex
cover problem iff

FRAGILITY (k, (NG−k)(NG+1)−2NG∗−2
(NG−k−1)(NG−k−2) , G, S) =

“yes”.
First, suppose by way of contradiction (BWOC) there
is a “yes” answer to the V C problem and a “no” an-
swer to the corresponding FRAGILITY problem.
Let V ∗∗ be the set of nodes that cause a “yes” an-
swer to V C. If we remove the corresponding nodes
from G, there are NG∗ + 1 edges left in that net-
work. Hence, as this is a set of size k (thus, meeting
the cardinality requirement of FRAGILITY then

fragileG(V ∗∗) = (NG−k)(NG+1)−2NG∗−4
(NG−k−1)(NG−k−2) which would

cause a “yes” answer for FRAGILITY – hence a
contradiction.
Going the other direction, suppose BWOC there is
a “yes” answer to the FRAGILITY problem and a
“no” answer to the corresponding V C problem. Let
V ′ be the nodes in the solution to FRAGILITY .
Clearly, this set is of size k and by how we set up
the no-strike list (S), there are corresponding nodes
in G∗∗. As these nodes cause a “yes” answer to
FRAGILITY , they result in the removal of MG∗

number of edges in G. By the construction, none of
these edges are adjacent to nodes in S. Hence, there
are corresponding edges in G∗. As this is also the
number of edges in G∗, then this set is also a vertex
cover - hence a contradiction. Hence, as we have
shown membership in NP and that this problem is at
least as hard as the dominating set problem (result-
ing in NP hardness), the statement of the theorem
follows.

Corollary 1 (Hardness of FRAGILITY OPT ).
FRAGILITY OPT is NP-hard

Proof. Follows directly from Theorem 1.

III ALGORITHMS

Now with the problems and their complexity identi-
fied, we proceed to develop algorithms to solve them.
First, we develop an integer program that, if solved
exactly, will produce an optimal solution. We note
that solving a general integer program is also NP-
hard. Hence, an exact solution will likely take ex-

ponential time. However, good approximation tech-
niques such as branch-and-bound exist and mature
tools such as QSopt and CPLEX can readily take and
approximate solutions to integer programs. We follow
our integer program formulation with a greedy heuris-
tic. Though we cannot guarantee that the greedy
heuristic provides an optimal solution, it often pro-
vides a natural approach to approximating many NP-
hard optimization problems.

1 INTEGER PROGRAM

Our first algorithm is presented in the form of an
integer program. The idea is that certain variables
in the integer program correspond with the nodes in
the original network that can be set to either 0 or
1. An objective function, which mirrors the fragile
function is then maximized. When this function is
maximized, all nodes associated with a 1 variable are
picked as the solution.

Definition III.1 (FRAGILITY IP ). For each i ∈
V , create variables Xi, Zi. For each undirected edge
ij ∈ E, create three variables: Yij , Qij , Qji. Note that
the edge is considered in only “one direction” for the
Y variables and both directions for the Q variables.
We define the FRAGILITY IP integer program as
follows:

max
(NG−

∑
iXi)

∑
ij Qij−2

∑
ij Yij

(NG−1−
∑

iXi)(NG−2−
∑

iXi)

Subject to: ∑
iXi ≤ k (3)∑
i Zi = 1 (4)

∀ij ∈ E Yij ≤ 1−Xi (5)

∀ij ∈ E Yij ≤ 1−Xj (6)

∀ij ∈ E Qij ≤ Yij (7)

∀ij ∈ E Qij ≤ Yji (8)

∀ij ∈ E Qij ≤ Zi (9)

∀i ∈ V Zi ∈ {0, 1} (10)

∀i ∈ S Xi = 0 (11)

∀i ∈ V − S Xi ∈ {0, 1} (12)

Next we prove how many variables and constraints
FRAGILITY IP requires as well as prove that it
provides a correct solution to FRAGILITY OPT .

Proposition III.1. FRAGILITY IP has 2NG +
3MG variables and 2 + 2NG + 5MG constraints.
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Proposition III.2. (1.) Given the vector X re-
turned by FRAGILITY IP , the set

⋃
Xi=1 i is a so-

lution to FRAGILITY OPT .
(2.)Given a solution V ′ to FRAGILITY OPT , ∀i ∈
S,X = 1 and ∀i /∈ S,X = 0 will maximize
FRAGILITY IP .

Proof. (1.) Suppose, BWOC,
⋃
Xi=1 i is not an op-

timal solution to FRAGILITY OPT . Then there is
some V ′ 6=

⋃
Xi=1 i that is. Suppose ∀i ∈ S,X = 1

and ∀i /∈ S,X = 0. Clearly, by the definition of a so-
lution to FRAGILITY OPT , constraints 3,11 and
12 are all met. Constraints 5 and 6 set variables as-
sociated with edges adjacent to nodes not in V ′ to
1. Hence, the quantity

∑
ij Yij is equal to the num-

ber of edges in the network. The Y edge variables
(both of them for each edge) are also set in a simi-
lar manner. Constraints 4,10 ensures that only one
set of such edge variables are set to 1. Hence, the
quantity

∑
iXi)

∑
ij Qij is the degree of one node in

the network. As this quantity is present in the objec-
tive function and non-negative, it corresponds to the
d∗G. As we note that

∑
iXi is equal to the number

of nodes in G when V ′ is removed, we see that this
function is fragileG. As this quantity is maximized,
we have a contradiction.
(2.) Suppose, BWOC, ∀i ∈ S,X = 1 and
∀i /∈ S,X = 0 is not an optimal solution to
FRAGILITY IP . Using the same line of reason-
ing as above, we see that the objective function of
FRAGILITY IP is the same as fragileG, which
also gives us a contradiction.

Note that this integer program does not have a lin-
ear objective function. However, this can be ac-
commodated for by instead solving k different inte-
ger programs and taking the solution from whichever
one returns the greatest value for the objective func-
tion (that is greater than the initial network-wide
degree centrality, of course). In this case, each in-
teger program is identified with a natural number
i ∈ {1, . . . , k} and the ith integer program has the
following objective function:

max
(NG−i)

∑
ij Qij−2

∑
ij Yij

(NG−1−i)(NG−2−i) (13)

As well as constraint 3 as follows:∑
iXi ≤ i (14)

Notice that now the quantities (NG−i) and (NG−1−
i)(NG−2−i) can be treated as constants, making the
objective function linear. However, for networks with

a heterogeneous degree distribution where NG >> k,
it is likely that only the integer program for the case
where i = k is needed as removing any node with
edges that is unconnected to a maximal degree node
will result in an increase in network-wide degree cen-
trality.

Again, we stress that FRAGILITY IP provides an
exact solution. As integer-programming is also NP-
hard, solving these constraints is likely intractable
unless P = NP . However, techniques such as branch-
and-bound and mature solvers such as QSopt and
CPLEX can provide good approximate solutions to
such constraints. Even if the integer program must
be linear, we can use the techniques described above
to solve k smaller integer programs or obtaining an
approximation by treating the terms involving the
total number of nodes in the resulting graph (in the
objective function) as constants. Additionally, a re-
laxation of the above constraints where Zi and Xi

variables lie in the interval [0, 1] is solvable in poly-
nomial time and would provide a lower-bound on the
solution to the problem (although this would likely
be a loose bound in many cases).

2 A GREEDY HEURISTIC

The integer program introduced in the last section
can be leveraged by an integer-program solver for an
approximate solution to FRAGILITY OPT . How-
ever, it likely will not scale well to extremely large
networks. Therefore, we introduce a greedy heuristic
to find an approximate solution. The ideas is to it-
eratively pick the node in the network that provides
the greatest increase in fragile - and does not cause
a decrease. The following proposition characterizes
the algorithm’s output. Though our guarantees on
GREEDY FRAGILE are limited, we show that it
performs well experimentally in the next section.

Proposition III.3. If GREEDY FRAGILE re-
turns a non-empty solution (V ′), then |V ′| ≤ k and
fragileG(V ′) > fragileG(∅).

Proof. As the algorithm terminates its main loop
once the cardinality of the solution reaches k and as
in each iteration, the variable curBestScore is ini-
tialized as zero, the statement follows.
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Algorithm: GREEDY FRAGILE

Require: Network G = (V,E), no-strike set S ⊆ V ,
cardinality constraint k

Ensure: Subset V ′

1: V ′ = ∅
2: flag = TRUE
3: while |V ′| ≤ k and flag do
4: curBest = null, curBestScore = 0,

haveV alidScore = FALSE
5: for i ∈ V − (V ′ ∪ S) do
6: curScore = fragileG(V ′ ∪ {i}) −

fragileG(V ′)
7: if curScore ≥ curBestScore then
8: curBest = i
9: curBestScore = curScore

10: haveV alidScore = TRUE
11: end if
12: end for
13: if haveV alidScore = FALSE then
14: flag = FALSE
15: else
16: V ′ = V ′ ∪ {curBest}
17: end if
18: end while
19: return V ′.

We also note that the algorithm runs in polynomial
time with the following proposition.

Proposition III.4. GREEDY FRAGILE runs in
O(kN2

G) time.

Proof. We note that fragile is computed in O(NG)
time as it must update the node with the maximum
degree. As the outer loop of the algorithm iterates at
most k times and the inner loop iterates NG times,
the statement follows.

Example III.1. Following from Examples II.1-II.2
using the terrorist/insurgent network Gsam from
[Figure 1], suppose a user wants to identify 3 nodes
that will cause the network to become “as fragile as
possible” and is able to target any node. Hence, he
would like to solve FRAGILE OPT (3, Gsam, ∅) and
decides to do so using GREEDY FRAGILE. Ini-
tially, fragileGsam

(∅) = 0.33. In the first iteration,
it selects and removes node a, increasing the fragility
(fragileGsam

({a}) = 0.57). In the next iteration, it
selects node j, giving us fragileGsam({a, j}) = 0.57.
Finally, in the third iteration, it picks node c. This
results in fragileGsam

({a, j, c}) = 0.6. The algorithm
then terminates.

IV IMPLEMENTATION AND EXPERI-
MENTS

All experiments were run on a computer equipped
with an Intel Core 2 Duo CPU T9550 processor
operating at 2.66 GHz (only one core was used).
The machine was running Microsoft Windows 7 (32
bit) and equipped with 4.0 GB of physical mem-
ory. We implemented the GREEDY FRAGILE al-
gorithm using Python 2.6 in under 30 lines of code
that leveraged the NetworkX library available from
http://networkx.lanl.gov/.

We compared the results of theGREEDY FRAGILE
to three other more traditional approaches to target-
ing that rely on centrality measures from the litera-
ture. Specifically, we look at the top closeness and
betweenness nodes in the network. Given node i, its
closeness is the inverse of the average shortest path
length from node i to all other nodes in the graph.
Betweenness, on the other hand, is defined as the
number of shortest paths between node pairs that
pass through i. Formal definitions of both of these
measures can be found in [4].

1 DATASETS

We studied the effects of our algorithm on five dif-
ferent datasets. The network Tanzania [5] is a
social network of the individuals involved with the
Al Qaeda bombing of the U.S. embassy in Dar
es Salaam in 1998. It was collected from news-
paper accounts by subject matter experts in the
field. The remainder networks, GenTerrorNw1-
GenTerrorNw4 are terrorist networks generated
from real-world classified datasets [6, 7]. The Tan-
zania and the GenTerrorNw1-GenTerrorNw4
datasets used in our analysis were multi-modal net-
works, meaning they contain multiple node classes
such as Agents, Resources, Locations, etc. The pres-
ence of the different node classes generate multiple
or meta networks, which, in their original state, do
not provide the single-mode Agent by Agent net-
work needed to test our algorithms. Johnson and
McCulloh [8] demonstrated a mathematical tech-
nique to convert meta networks into single-mode net-
works without losing critical information. Using this
methodology, we were able to derive distant relation-
ships between nodes as a series of basic matrix al-
gebra operations on all five networks. The result is
an agent based social network of potential terrorist.
Characteristics of the transformed networks of agent
node class only can be found in [Table 1].
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Name Nodes Edges Density Avg. Deg.

Tanzania 17 29 0.213 3.412

GenTerrorNw1 57 162 0.102 5.684

GenTerrorNw2 102 388 0.0753 7.608

GenTerrorNw3 105 590 0.108 11.238

GenTerrorNw4 135 556 0.0615 8.237

URV E-Mail 1, 133 5, 541 0.00864 9.781

CA-NetSci 1, 463 2, 743 0.00256 3.750

Table 1: Network Datasets

2 INCREASING THE FRAGILITY OF
NETWORKS

In our experiments, we showed that our algorithm
was able to significantly increase the network-wide
degree centrality by removing nodes - hence increas-
ing the fragile function with respect to a given net-
work. In each of the five real-world terrorist networks
that we examined, removal of only 12% of nodes
can increase the network-wide centrality between 17%
and 45% (see [Figure 3]-[Figure 7]). In [Figure 2] we
show a visualization of how the Tanzania network
becomes more “star-like” with subsequent removal of
nodes by the greedy algorithm.

For comparison, we also looked at the removal of high
degree, closeness, and betweenness nodes. Removal of
high-degree, closeness, or betweenness nodes tended
to increase the network-wide centrality. In other
words, traditional efforts of targeting leadership with-
out first conducting shaping operations may actually
increase the organization’s ability to regenerate lead-
ership - as such targeting operations effectively cause
an organization to de-centralize. We display these
results graphically in [Figure 3]-[Figure 7]. Notice
that GREEDY FRAGILE consistently causes an
increase in the network-wide degree centrality. An
analysis of variance (ANOVA) reveals that there is a
significant difference in the performance among our
algorithm and the centrality measures with respect to
increase or decrease in network-wide degree centrality
(p-value less than 2.2 · 10−16, calculated with R ver-
sion 2.13). Additionally, pairwise analysis conducted
using Tukey’s Honest Significant Difference (HSD)
test indicates that the results of our algorithm differ
significantly from any of the three centrality measures
with a probability approaching 1.0 (95% confidence,
calculated with R version 2.13). Typically, the ra-
tio of percent increase in fragility to the percent of
removed nodes is typically 2 : 1 or greater.

fig. 2

Visualization of the Tanzania network after nodes removed by

GREEDY FRAGILE. Panel A shows the original network. Panel B

shows it after 3 nodes are removed, panel C shows the result of 5

nodes removed, and panel D shows the network after 9 nodes are

removed. Notice that the network becomes more “star-like.”

fig. 3

Percent of nodes removed vs. percent increase in fragility for the

Tanzania network using GREEDY FRAGILE, top degree, top

closeness, and top betweenness. The scale of the x-axis is positioned at

0%.

fig. 4

Percent of nodes removed vs. percent increase in fragility for the

GenTerrorNet1 network using GREEDY FRAGILE, top degree,

top closeness, and top betweenness. The scale of the x-axis is

positioned at 0%.

Page 7 of 11
c©ASE 2012ISBN: 978-1-62561-004-1 21



fig. 5

Percent of nodes removed vs. percent increase in fragility for the

GenTerrorNw2 network using GREEDY FRAGILE, top degree, top

closeness, and top betweenness. The scale of the x-axis is positioned at

0%.

fig. 6

Percent of nodes removed vs. percent increase in fragility for the

GenTerrorNw3 network using GREEDY FRAGILE, top degree,

top closeness, and top betweenness. The scale of the x-axis is

positioned at 0%.

fig. 7

Percent of nodes removed vs. percent increase in fragility for the

GenTerrorNw4 network using GREEDY FRAGILE, top degree,

top closeness, and top betweenness. The scale of the x-axis is

positioned at 0%.

3 RUNTIME

We also evaluated the run-time of the
GREEDY FRAGILE algorithm. With the largest
terror network considered (GenTerrorNw4), we
achieved short runtime (under 7 seconds) on stan-
dard commodity hardware (see [Figure 8]). Hence,
in terms of runtime, our algorithm is practical for
use by a real-world analyst. As predicted in our
time complexity result, we found that the runtime of
GREEDY FRAGILE increases with the number of
nodes removed. We note that the implementations
of top degree, closeness, and betweenness calculate
those measures for the entire network at once - hence
increasing the number of nodes to remove does not
affect their runtime.

fig. 8

Number of nodes removed vs. runtime for the GenTerrorNw4

network using GREEDY FRAGILE, top degree, top closeness, and

top betweenness.

4 EXPERIMENTS ON LARGE DATA-
SETS

To study the scalability of GREEDY FRAGILE,
we also employed it on two large social networks.
Note that these datasets are not terrorist or insurgent
networks. However, the larger size of these datasets
is meant to illustrate how well our approach scales.
For these experiments, we used an e-mail network
from University Rovira i Virgili (URV E-Mail) [9]
and a Network Science collaboration network (CA-
NetSci) from [10] (see [Table 1]). In [Figure 9] we
show the percentage of nodes removed vs. the per-
cent increase in fragility. We note that 2 : 1 ratio
of percent increase in fragility to the percent of re-
moved nodes appears to be maintained even in these
large datasets. In [Figure 10] we show the runtime for
GREEDY FRAGILE on the two large networks.
We note that the behavior of runtime vs. number of
nodes removed resembles that of the GenTerrorNw4
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network from the previous section. Also of interest
is that the algorithm was able to handle networks of
over a thousand nodes in about 20 minutes on com-
modity hardware.

V RELATED WORK

Various aspects of the resiliency of terrorist networks
have been previously explored in the literature. For
instance, [11] studies the ability such network to facil-
itate communication while maintaining secrecy while
[12] studies how such networks are resilient to cas-
cades. However, to our knowledge, the network-wide
degree centrality in such networks - and how to in-
crease this property - has not been previously studied.

There has been much work dealing with the removal
of nodes from a network to maximize fragmenta-
tion [13–15] where the nodes removed are mean to ei-
ther increase fragmentation of the network or reduce
the size of the largest connected component. While
this work has many applications, it is important to
note that there are special considerations of terror-
ist and insurgent networks that we must account for
in a targeting strategy. For instance, if conducting
a counter-intelligence operation while targeting, as
in the case of [3], it may be desirable to preserve
some amount of connectivity in the network. Ad-
ditionally, fragmentation of a network may result in
the splintering of an organization into smaller, but
more radical and deadly organizations. This hap-
pens because in some cases, it may be desirable to
keep certain terrorist or insurgent leaders in place to
restrain certain, more radical elements of their orga-
nization. Such splinter was observed for the insurgent
organization Jaysh al-Mahdi in Iraq [16]. Further,
these techniques do not specifically address the issue
of emerging leaders. Hence, if they were to be used for
counter-terrorism or counter-insurgency, they would
likely still benefit from a shaping operation to reduce
organization’s ability to regenerate leadership.

There has been some previous work on identifying
emerging leaders in terrorist networks. Although
such an approach could be useful in identifying cer-
tain leaders, it does not account the organizations
ability as a whole to regenerate leadership. In [2],
the topic of cognitive demand is studied. The cog-
nitive load of an individual deals with their ability
to handle multiple demands on their time and work
on complex tasks. Typically, this can be obtained
by studying networks where the nodes may repre-
sent more than individual people - but tasks, events,

and responsibilities. However, it may often be the
case that this type of information is often limited or
non-existent in many situations. Additionally, as dis-
cussed throughout this paper, the targeting of indi-
vidual nodes may often not be possible for various
reasons. Hence, our framework, that focuses on the
network’s ability to regenerate leadership as opposed
to finding individual emerging leaders may be more
useful as we can restrict the available nodes in our
search using the “no strike list.” By removing these
nodes from targeting consideration - but by still con-
sidering their structural role - our framework allows
a security force to reduce the regenerative ability of a
terror network by “working around” individuals that
may not be targeted.

In more recent work [17] looks at the problem of re-
moving leadership nodes from a terrorist or crimi-
nal network in a manner that accounts for new links
created in the aftermath of an operation. Addition-
ally, [18] look at identifying leaders in covert terrorist
network who attempt to minimize their communica-
tion due to the clandestine nature of their operations.
They do this by introducing a new centrality mea-
sure called “covertness centrality.” Both of these ap-
proaches are complementary to ours as they focus on
the leadership of the terrorist or insurgent group -
as this approach focuses on the networks ability to
re-generate leadership. A more complete integration
of this approach leadership targeting method such as
these (i.e. using a network-wide version of covertness
centrality) is an obvious direction for future work.

fig. 9

Percent of nodes removed vs. percent increase in fragility for the URV

E-Mail and CA-NetSci networks using GREEDY FRAGILE.
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fig. 10

Number of nodes removed vs. runtime for the URV E-Mail and

CA-NetSci networks using GREEDY FRAGILE.

VI CONCLUSIONS

In this paper we described how to target nodes in a
terrorist or insurgent network as part of a shaping
operation designed to reduce the organization’s abil-
ity to regenerate leadership. Our key intuition was
to increase the network-wide degree centrality which
would likely have the effect of eliminating emerging
leaders as maximizing this quantity would intuitively
increase the organization’s reliance on a single leader.

In this paper, we found that though identifying a set
of nodes to maximize this network-wide degree cen-
trality is NP-hard, our greedy approach proved to
be a viable heuristic for this problem, increasing this
quantity between 17%−45% in our experiments. Fu-
ture work could include an examination of other types
of network-wide centrality – for instance network-
wide closeness centrality – instead of network-wide
degree centrality. Another aspect that we are consid-
ering in ongoing research is determining the effective-
ness of the shaping strategy when we have observed
only part of the terrorist or insurgent organization –
as is often the case as such networks are created from
intelligence data.
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